Z80

From CPCWiki - THE Amstrad CPC encyclopedia!
Revision as of 04:00, 1 September 2024 by Phi2x (Talk | contribs) (Opcodes)

Jump to: navigation, search
Zilog Z80A

Microprocessor from Zilog, which is used in the Amstrad CPC Computers. The Z80/Z80A was a very popular microprocessor, used in a great variety of home computers and appliances as far-fetched as satellites. It was even used in the Commodore C128 as a secondary processor in order to achieve CP/M compatibility.

Description

The Z80 microprocessor is an 8-bit CPU with a 4-bit ALU and a 16-bit address bus capable of direct access to 64k of memory space. It has a language of 252 root instructions and with the reserved 4 bytes as prefixes, access to an additional 308 instructions. The Z80 was modelled after the 8080 and contains the seventy-eight 8080 opcodes as a subset to its language.

While not in the same league as the Intel 80x86 or the Motorola 68000 series, the Z80 is extremely useful for low cost control applications. One of the more useful features of the Z80 is the built-in refresh circuitry for ease of design with DRAMs.

The Z80 comes in a 40 pin DIP package. It has been manufactured in A, B, and C models, differing only in maximum clock speed. It also has been manufactured as a stand-alone microcontroller with various configurations of on-chip RAM and EPROM.

Part numbers used in the Amstrad CPC during its lifetime

The Z80 CPU has been manufactured by others, and various Z80s have been used in the construction of the CPC during its lifetime.

  • SGS Z8400AB1
  • ST Z8400AB1
  • ZILOG Z8400APS
  • ZILOG Z0840004PSC

Zilog ended the production of the Z80 in April 2024. The chip is still available in ample quantities through NOS chip suppliers.

modern incarnatinons

Template:Stub

Apart from surplus/new Z80-clones that are quite easy to find, many emulations depend on software implementations of the Z80:

  • The T80 is a VHDL implementation of the Z80 and Z80A, finished in 2002 on OpenCores
  • arnold uses InkZ80, written in C++ (apart from the author-designed C simulation)
  • On OpenCores, there is also a Verilog implementation of the Z80.

Zilog itself offers the eZ80 processor, a new, 50MHz design. Kits now have reached a less-than-prohibitive price range and may be available without a business.

See also

Block Diagram

Z80 Block Diagram.gif

Manuals

Weblinks

Registers

Register Size Description Notes
B, C, D, E, H, L 8-bit General-purpose registers Can form 16-bit pairs: BC, DE, HL
A (Accumulator) 8-bit Main register for arithmetic, logic, and data transfer Most used register
F (Flags) 8-bit
  • bit7 - SF - Sign Flag
  • bit6 - ZF - Zero Flag
  • bit5 - F5 - Undocumented
  • bit4 - HF - Half Carry Flag
  • bit3 - F3 - Undocumented
  • bit2 - PF - Parity Flag (also sometimes used for Overflow)
  • bit1 - NF - Negation Flag (last ALU op was subtract or compare)
  • bit0 - CF - Carry Flag
Flags are affected by most operations
AF', BC', DE', HL' 16-bit Alternate register set Swappable with primary registers for fast context switching
SP (Stack Pointer) 16-bit Points to top of the stack Used for subroutine calls and interrupt handling
PC (Program Counter) 16-bit Points to the next instruction Automatically increments as instructions execute
IX, IY (Index Registers) 16-bit Used for indexed addressing Can be split into IXH/IXL, IYH/IYL for 8-bit access
I (Interrupt Vector) 8-bit Holds base address for interrupt mode 2 Combined with external data to form an interrupt vector
R (Memory Refresh) 8-bit Increments after each instruction fetch to refresh DRAM Only the lower 7 bits are incremented

Internal state

Register Size Description Notes
IM (Interrupt Mode) 2-bit Specifies the interrupt mode (0, 1, or 2) Controls how interrupts are handled:
  • IM 0: External devices provide interrupt vectors
  • IM 1: Fixed vector at 0038h
  • IM 2: Vector provided by I register and external data
IFF1 1-bit Interrupt enable flag Set when interrupts are enabled, cleared on disable
IFF2 1-bit IFF1 buffer Allows interrupts to be enabled after the instruction following EI
WZ 16-bit Internal temporary register pair Used for memory and address calculations
IR (Instruction Register) 8-bit Holds the opcode of the currently executing instruction Internally used, not accessible by the programmer
EIP (Extended Instruction Prefix) 2-bit Holds the prefix for extended instructions (CB, ED, or none) Used for extended instruction sets like bitwise ops
IMP (Indexing Mode Prefix) 2-bit Specifies the indexing mode (DD for IX+d, FD for IY+d, or none for HL) Indicates use of index registers (IX or IY) for memory access

Opcodes

Check the end of the document for explanations of abbreviations used below.

Z80 Instructions: A

Instruction Opcode Cycles S Z X H Y P N C Effect Description
adc a,R 10001rrr 4 + + + + + V 0 + a += R + cf Add with Carry
adc a,J 11i11101 1000110b 8 + + + + + V 0 + a += J + cf
adc a,N 11001110 nnnnnnnn 7 + + + + + V 0 + a += N + cf
adc a,(hl) 10001110 7 + + + + + V 0 + a += (hl) + cf
adc a,(I+D) 11i11101 10001110 dddddddd 19 + + + + + V 0 + a += (I+D) + cf
adc hl,Q 11101101 01qq1010 15 + + + + + V 0 + hl += Q + cf
add a,R 10000rrr 4 + + + + + V 0 + a += R Add
add a,J 11i11101 1000010b 8 + + + + + V 0 + a += J
add a,N 11000110 nnnnnnnn 7 + + + + + V 0 + a += N
add a,(hl) 10000110 7 + + + + + V 0 + a += (hl)
add a,(I+D) 11i11101 10000110 dddddddd 19 + + + + + V 0 + a += (I+D)
add hl,Q 00qq1001 11 - - + + + - 0 + hl += Q
add I,Q 11i11101 00qq1001 15 - - + + + - 0 + I += Q
and R 10100rrr 4 + + + 1 + P 0 0 a := a AND R Logical AND
and J 11i11101 1010010b 8 + + + 1 + P 0 0 a := a AND J
and N 11100110 nnnnnnnn 7 + + + 1 + P 0 0 a := a AND N
and (hl) 10100110 7 + + + 1 + P 0 0 a := a AND (hl)
and (I+D) 11i11101 10100110 dddddddd 19 + + + 1 + P 0 0 a := a AND (I+D)

Z80 Instructions: B

Instruction Opcode Cycles S Z X H Y P N C Effect Description
bit B,R 11001011 01bbbrrr 8 + + + 1 + P 0 - tmp := R AND [1 << B]
bit B,(hl) 11001011 01bbb110 12 + + X 1 X P 0 - tmp := (hl) AND [1 << B], xf := memptr.13, yf := memptr.11
bit B,(I+D) 11i11101 11001011 dddddddd 01bbb*** 20 + + X 1 X P 0 - tmp := (I+D) AND [1 << B], xf := [I+D].13, yf := [I+D].11

Z80 Instructions: C

Instruction Opcode Cycles S Z X H Y P N C Effect Description
call A 11001101 alalalal ahahahah 17 - - - - - - - - sp -= 2, (sp) := pc, pc := A
call C,A 11ccc100 alalalal ahahahah 17/10 - - - - - - - - if C then sp -= 2, (sp) := pc, pc := A
ccf 00111111 4 - - A X A - 0 X hf := cf, cf := ~cf
cp R 10111rrr 4 + + X + X V 1 + tmp := a - R, xf := R.5, yf := R.3
cp J 11i11101 1011110b 8 + + X + X V 1 + tmp := a - J, xf := J.5, yf := J.3
cp N 11111110 nnnnnnnn 7 + + X + X V 1 + tmp := a - N, xf := N.5, yf := N.3
cp (hl) 10111110 7 + + X + X V 1 + tmp := a - (hl), xf := (hl).5, yf := (hl).3
cp (I+D) 11i11101 10111110 dddddddd 19 + + X + X V 1 + tmp := a - (I+D), xf := (I+D).5, yf := (I+D).3
cpd 11101101 10101001 16 + + X + X C 1 - tmp := a - (hl) => flags, bc -= 1, hl -= 1, xf := [tmp - hf].1, yf = [tmp - hf].3
cpdr 11101101 10111001 21/16 + + X + X C 1 - cpd, if bc <> 0 and nz then pc -= 2
cpi 11101101 10100001 16 + + X + X C 1 - tmp := a - (hl) => flags, bc -= 1, hl += 1, xf := [tmp - hf].1, yf = [tmp - hf].3
cpir 11101101 10110001 21/16 + + X + X C 1 - cpi, if bc <> 0 and nz then pc -= 2
cpl 00101111 4 - - + 1 + - 1 - a := ~a

Z80 Instructions: D

Instruction Opcode Cycles S Z X H Y P N C Effect Description
daa 00100111 4 + + + X + P - X tmp := a,

if nf then

if hf or [a AND 0x0f > 9] then tmp -= 0x06
if cf or [a > 0x99] then tmp -= 0x60

else

if hf or [a AND 0x0f > 9] then tmp += 0x06
if cf or [a > 0x99] then tmp += 0x60

endif, tmp => flags, cf := cf OR [a > 0x99], hf := a.4 XOR tmp.4, a := tmp

dec R 00rrr101 4 + + + + + V 1 - R -= 1
dec J 11i11101 0010b101 8 + + + + + V 1 - J -= 1
dec (hl) 00110101 11 + + + + + V 1 - (hl) -= 1
dec (I+D) 11i11101 00110101 dddddddd 19 + + + + + V 1 - (I+D) -= 1
dec Q 00qq1011 6 - - - - - - - - Q -= 1
dec I 11i11101 00101011 10 - - - - - - - - I -= 1
di 11110011 4 - - - - - - - - iff1 := 0, iff2 := 0
djnz E 00010000 dddddddd 13/8 - - - - - - - - b -= 1, if b <> 0 then pc := E

Z80 Instructions: E

Instruction Opcode Cycles S Z X H Y P N C Effect Description
ei 11111011 4 - - - - - - - - iff1 := 1, iff2 := 1 after the next instruction
ex (sp),hl 11100011 19 - - - - - - - - (sp) <=> hl
ex (sp),I 11i11101 11100011 23 - - - - - - - - (sp) <=> I
ex af,af' 00001000 4 X X X X X X X X af <=> af'
ex de,hl 11101011 4 - - - - - - - - de <=> hl
exx 11011001 4 - - - - - - - - bc, de, hl <=> bc', de', hl'

Z80 Instructions: H

Instruction Opcode Cycles S Z X H Y P N C Effect Description
halt 01110110 4 - - - - - - - - wait for interrupt

Z80 Instructions: I

Instruction Opcode Cycles S Z X H Y P N C Effect Description
im 0 11101101 01*0*110 8 - - - - - - - - mode 0: execute instruction on bus
im 1 11101101 01*10110 8 - - - - - - - - mode 1: execute rst $38
im 2 11101101 01*11110 8 - - - - - - - - mode 2: call (i * 256 + byte on bus)
in a,(N) 11011011 nnnnnnnn 11 - - - - - - - - a := ((N))
in R,(c) 11101101 01rrr000 12 + + + 0 + P 0 - R := ((c))
in f,(c) 11101101 01110000 12 + + + 0 + P 0 - tmp := ((c))
inc R 00rrr100 4 + + + + + V 0 - R += 1
inc J 11i11101 0010b100 8 + + + + + V 0 - J += 1
inc (hl) 00110100 11 + + + + + V 0 - (hl) += 1
inc (I+D) 11i11101 00110100 dddddddd 23 + + + + + V 0 - (I+D) += 1
inc Q 00qq0011 6 - - - - - - - - Q += 1
inc I 11i11101 00100011 10 - - - - - - - - I += 1
ind 11101101 10101010 16 + + + X + X X X tmp := ((c)), (hl) := tmp, hl -= 1,

b -= 1 => flags, nf := tmp.7, tmp2 = tmp + [[c - 1] AND 0xff], pf := parity of [[tmp2 AND 0x07] XOR b], hf := cf := tmp2 > 255

indr 11101101 10111010 21/16 + + + X + X X X ind, if b <> 0 then pc -= 2
ini 11101101 10100010 16 + + + X + X X X tmp := ((c)), (hl) := tmp, hl += 1,

b -= 1 => flags, nf := tmp.7, tmp2 := tmp + [[c + 1] AND 0xff], pf := parity of [[tmp2 AND 0x07] XOR b], hf := cf := tmp2 > 255

inir 11101101 10110010 21/16 + + + X + X X X ini, if b <> 0 then pc -= 2

Z80 Instructions: J

Instruction Opcode Cycles S Z X H Y P N C Effect Description
jp A 11000011 alalalal ahahahah 10 - - - - - - - - pc := A
jp (hl) 11101001 4 - - - - - - - - pc := hl
jp (I) 11i11101 11101001 8 - - - - - - - - pc := I
jp C,A 11ccc010 alalalal ahahahah 10 - - - - - - - - if C then pc := A
jr E 00011000 dddddddd 12 - - - - - - - - pc := E
jr nz,E 00100000 dddddddd 12/7 - - - - - - - - if nz then pc := E
jr z,E 00101000 dddddddd 12/7 - - - - - - - - if zf then pc := E
jr nc,E 00110000 dddddddd 12/7 - - - - - - - - if nc then pc := E
jr c,E 00111000 dddddddd 12/7 - - - - - - - - if cf then pc := E

Z80 Instructions: L

Instruction Opcode Cycles S Z X H Y P N C Effect Description
ld R1,R2 01rrrsss 4 - - - - - - - - R1 := R2
ld R,J 11i11101 01rrr10b 8 - - - - - - - - R := J
ld J,R 11i11101 0110brrr 8 - - - - - - - - J := R
ld ixh,ixl 11011101 01100101 8 - - - - - - - - ixh := ixl
ld ixl,ixh 11011101 01101100 8 - - - - - - - - ixl := ixh
ld iyh,iyl 11111101 01100101 8 - - - - - - - - iyh := iyl
ld iyl,iyh 11111101 01101100 8 - - - - - - - - iyl := iyh
ld R,N 00rrr110 nnnnnnnn 7 - - - - - - - - R := N
ld R,(hl) 01rrr110 7 - - - - - - - - R := (hl)
ld R,(I+D) 11i11101 01rrr110 dddddddd 19 - - - - - - - - R := (I+D)
ld (hl),R 01110rrr 7 - - - - - - - - (hl) := R
ld (hl),N 00110110 nnnnnnnn 10 - - - - - - - - (hl) := N
ld (I+D),R 11i11101 01110rrr dddddddd 19 - - - - - - - - (I+D) := R
ld (I+D),N 11i11101 00110110 dddddddd nnnnnnnn 19 - - - - - - - - (I+D) := N
ld a,(bc) 00001010 7 - - - - - - - - a := (bc)
ld a,(de) 00011010 7 - - - - - - - - a := (de)
ld a,(A) 00111010 alalalal ahahahah 13 - - - - - - - - a := (A)
ld (bc),a 00000010 7 - - - - - - - - (bc) := a
ld (de),a 00010010 7 - - - - - - - - (de) := a
ld (A),a 00110010 alalalal ahahahah 13 - - - - - - - - (A) := a
ld i,a 11101101 01000111 9 - - - - - - - - i := a
ld r,a 11101101 01001111 9 - - - - - - - - r := a
ld a,i 11101101 01010111 9 + + + 0 + X 0 - a := i, pf := iff2
ld a,r 11101101 01011111 9 + + + 0 + X 0 - a := r, pf := iff2
ld Q,A 00qq0001 alalalal ahahahah 10 - - - - - - - - Q := A
ld I,A 11i11101 00100001 alalalal ahahahah 14 - - - - - - - - I := A
ld Q,(A) 11101101 01qq1011 alalalal ahahahah 20 - - - - - - - - Q := (A)
ld hl,(A) 00101010 alalalal ahahahah 16 - - - - - - - - hl := (A)
ld I,(A) 11i11101 00101010 alalalal ahahahah 20 - - - - - - - - I := (A)
ld (A),Q 11101101 01qq0011 alalalal ahahahah 20 - - - - - - - - (A) := Q
ld (A),hl 00100010 alalalal ahahahah 16 - - - - - - - - (A) := hl
ld (A),I 11i11101 00100010 alalalal ahahahah 20 - - - - - - - - (A) := I
ld sp,hl 11111001 6 - - - - - - - - sp := hl
ld sp,I 11i11101 11111001 10 - - - - - - - - sp := I
ldd 11101101 10101000 16 - - X 0 X C 0 - tmp := (hl), (de) := tmp, de -= 1, hl -= 1, bc -= 1, xf := [tmp + a].1, yf := [tmp + a].3
lddr 11101101 10111000 21/16 - - X 0 X C 0 - ldd, if bc <> 0 then pc -= 2
ldi 11101101 10100000 16 - - X 0 X C 0 - tmp := (hl), (de) := tmp, de += 1, hl += 1, bc -= 1, xf := [tmp + a].1, yf := [tmp + a].3
ldir 11101101 10110000 21/16 - - X 0 X C 0 - ldi, if bc <> 0 then pc -= 2

Z80 Instructions: N

Instruction Opcode Cycles S Z X H Y P N C Effect Description
neg 11101101 01***100 8 + + + + + V 1 + a := 0 - a
nop 00000000 4 - - - - - - - - nothing

Z80 Instructions: O

Instruction Opcode Cycles S Z X H Y P N C Effect Description
or R 10110rrr 4 + + + 0 + P 0 0 a := a OR R
or J 11i11101 1011010b 8 + + + 0 + P 0 0 a := a OR J
or N 11110110 nnnnnnnn 7 + + + 0 + P 0 0 a := a OR N
or (hl) 10110110 7 + + + 0 + P 0 0 a := a OR (hl)
or (I+D) 11i11101 10110110 dddddddd 19 + + + 0 + P 0 0 a := a OR (I+D)
out (N),a 11010011 nnnnnnnn 11 - - - - - - - - ((N)) := a
out (c),R 11101101 01rrr001 12 - - - - - - - - ((c)) := R
out (c),0 11101101 01110001 12 - - - - - - - - ((c)) := ? (seems to vary with CPU)
outd 11101101 10101011 16 + + + X + X X X tmp := (hl), ((c)) := tmp, hl -= 1, b -= 1 => flags, nf := tmp.7, tmp2 = tmp + l, pf := parity of [[tmp2 AND 0x07] XOR b], hf := cf := tmp2 > 255
otdr 11101101 10111011 21/16 + + + X + X X X outd, if b <> 0 then pc -= 2
outi 11101101 10100011 16 + + + X + X X X tmp := (hl), ((c)) := tmp, hl += 1, b -= 1 => flags, nf := tmp.7, tmp2 = tmp + l, pf := parity of [[tmp2 AND 0x07] XOR b], hf := cf := tmp2 > 255
otir 11101101 10110011 21/16 + + + X + X X X outi, if b <> 0 then pc -= 2

Z80 Instructions: P

Instruction Opcode Cycles S Z X H Y P N C Effect Description
pop P 11pp0001 10 - - - - - - - - P := (sp), sp += 2 Pop a value from the stack
pop I 11i11101 11100001 14 - - - - - - - - I := (sp), sp += 2
push P 11pp0101 11 - - - - - - - - sp -= 2, (sp) := P Push a value onto the stack
push I 11i11101 11100101 15 - - - - - - - - sp -= 2, (sp) := I

Z80 Instructions: R

Instruction Opcode Cycles S Z X H Y P N C Effect Description
res B,R 11001011 10bbbrrr 8 - - - - - - - - R := R AND ~[1 << B]
res B,(hl) 11001011 10bbb110 15 - - - - - - - - (hl) := (hl) AND ~[1 << B]
res B,(I+D) 11i11101 11001011 dddddddd 10bbb110 23 - - - - - - - - (I+D) := (I+D) AND ~[1 << B]
res B,(I+D)->R 11i11101 11001011 dddddddd 10bbbrrr 23 - - - - - - - - (I+D) := R := (I+D) AND ~[1 << B]
ret 11001001 10 - - - - - - - - pc := (sp), sp += 2
ret C 11ccc000 11/5 - - - - - - - - if C then pc := (sp), sp += 2
reti 11101101 01**1101 14 - - - - - - - - pc := (sp), sp += 2, iff1 := iff2
retn 11101101 01**0101 14 - - - - - - - - pc := (sp), sp += 2, iff1 := iff2
rla 00010111 4 - - + 0 + - 0 X ocf := cf, cf := a.7, a := [a << 1] + ocf
rl R 11001011 00010rrr 8 + + + 0 + P 0 X ocf := cf, cf := R.7, R := [R << 1] + ocf
rl (hl) 11001011 00010110 15 + + + 0 + P 0 X ocf := cf, cf := (hl).7, (hl) := [(hl) << 1] + ocf
rl (I+D) 11i11101 11001011 dddddddd 00010110 23 + + + 0 + P 0 X ocf := cf, cf := (I+D).7, (I+D) := [(I+D) << 1] + ocf
rl (I+D)->R 11i11101 11001011 dddddddd 00010rrr 23 + + + 0 + P 0 X ocf := cf, cf := (I+D).7, (I+D) := R := [(I+D) << 1] + ocf
rlca 00000111 4 - - + 0 + - 0 X cf := a.7, a := [a << 1] + cf
rlc R 11001011 00000rrr 8 + + + 0 + P 0 X cf := R.7, R := [R << 1] + cf
rlc (hl) 11001011 00000110 15 + + + 0 + P 0 X cf := (hl).7, (hl) := [(hl) << 1] + cf
rlc (I+D) 11i11101 11001011 dddddddd 00000110 23 + + + 0 + P 0 X cf := (I+D).7, (I+D) := [(I+D) << 1] + cf
rlc (I+D)->R 11i11101 11001011 dddddddd 00000rrr 23 + + + 0 + P 0 X cf := (I+D).7, (I+D) := R := [(I+D) << 1] + cf
rld 11101101 01101111 18 + + + 0 + P 0 - tmp := [(hl) << 4] + [a AND 0x0f], (hl) := tmp, a := [a AND 0xf0] + [tmp >> 8] => flags
rra 00011111 4 - - + 0 + - 0 X ocf := cf, cf := a.0, a := [a >> 1] + [ocf << 7]
rr R 11001011 00011rrr 8 + + + 0 + P 0 X ocf := cf, cf := R.0, R := [R >> 1] + [ocf << 7]
rr (hl) 11001011 00011110 15 + + + 0 + P 0 X ocf := cf, cf := (hl).0, (hl) := [(hl) >> 1] + [ocf << 7]
rr (I+D) 11i11101 11001011 dddddddd 00011110 23 + + + 0 + P 0 X ocf := cf, cf := (I+D).0, (I+D) := [(I+D) >> 1] + [ocf << 7]
rr (I+D)->R 11i11101 11001011 dddddddd 00011rrr 23 + + + 0 + P 0 X ocf := cf, cf := (I+D).0, (I+D) := R := [(I+D) >> 1] + [ocf << 7]
rrca 00001111 4 - - + 0 + - 0 X cf := a.0, a := [a >> 1] + [cf << 7]
rrc R 11001011 00001rrr 8 + + + 0 + P 0 X cf := R.0, R := [R >> 1] + [cf << 7]
rrc (hl) 11001011 00001110 15 + + + 0 + P 0 X cf := (hl).0, (hl) := [(hl) >> 1] + [cf << 7]
rrc (I+D) 11i11101 11001011 dddddddd 00001110 23 + + + 0 + P 0 X cf := (I+D).0, (I+D) := [(I+D) >> 1] + [cf << 7]
rrc (I+D)->R 11i11101 11001011 dddddddd 00001rrr 23 + + + 0 + P 0 X cf := (I+D).0, (I+D) := R := [(I+D) >> 1] + [cf << 7]
rrd 11101101 01100111 18 + + + 0 + P 0 - tmp := (hl), (hl) := [tmp >> 4] + [[a AND 0x0f] << 4], a := [a AND 0xf0] + [tmp AND 0x0f] => flags
rst S 11sss111 11 - - - - - - - - sp -= 2, (sp)

Z80 Instructions: S

Instruction Opcode Cycles S Z X H Y P N C Effect Description
sbc a,R 10011rrr 4 + + + + + V 1 + a -= R + cf
sbc a,J 11i11101 1001110b 8 + + + + + V 1 + a -= J + cf
sbc a,N 11011110 nnnnnnnn 7 + + + + + V 1 + a -= N + cf
sbc a,(hl) 10011110 7 + + + + + V 1 + a -= (hl) + cf
sbc a,(I+D) 11i11101 10011110 dddddddd 19 + + + + + V 1 + a -= (I+D) + cf
sbc hl,Q 11101101 01qq0010 15 + + + + + V 1 + hl -= Q + cf
scf 00110111 4 - - A 0 A - 0 1 nothing else
set B,R 11001011 11bbbrrr 8 - - - - - - - - R := R OR [1 << B]
set B,(hl) 11001011 11bbb110 15 - - - - - - - - (hl) := (hl) OR [1 << B]
set B,(I+D) 11i11101 11001011 dddddddd 11bbb110 23 - - - - - - - - (I+D) := (I+D) OR [1 << B]
set B,(I+D)->R 11i11101 11001011 dddddddd 11bbbrrr 23 - - - - - - - - (I+D) := R := (I+D) OR [1 << B]
sla R 11001011 00100rrr 8 + + + 0 + P 0 X cf := R.7, R := R << 1
sla (hl) 11001011 00100110 15 + + + 0 + P 0 X cf := (hl).7, (hl) := (hl) << 1
sla (I+D) 11i11101 11001011 dddddddd 00100110 23 + + + 0 + P 0 X cf := (I+D).7, (I+D) := (I+D) << 1
sla (I+D)->R 11i11101 11001011 dddddddd 00100rrr 23 + + + 0 + P 0 X cf := (I+D).7, (I+D) := R := (I+D) << 1
sra R 11001011 00101rrr 8 + + + 0 + P 0 X cf := R.0, R := R >> 1, R.7 := R.6
sra (hl) 11001011 00101110 15 + + + 0 + P 0 X cf := (hl).0, (hl) := (hl) >> 1, (hl).7 := (hl).6
sra (I+D) 11i11101 11001011 dddddddd 00101110 23 + + + 0 + P 0 X cf := (I+D).0, (I+D) := (I+D) >> 1, (I+D).7 := (I+D).6
sra (I+D)->R 11i11101 11001011 dddddddd 00101rrr 23 + + + 0 + P 0 X cf := (I+D).0, tmp := (I+D) >> 1, tmp.7 := tmp.6, (I+D) := R := tmp
sll R 11001011 00110rrr 8 + + + 0 + P 0 X cf := R.7, R := [R << 1] + 1
sll (hl) 11001011 00110110 15 + + + 0 + P 0 X cf := (hl).7, (hl) := [(hl) << 1] + 1
sll (I+D) 11i11101 11001011 dddddddd 00110110 23 + + + 0 + P 0 X cf := (I+D).7, (I+D) := [(I+D) << 1] + 1
sll (I+D)->R 11i11101 11001011 dddddddd 00110rrr 23 + + + 0 + P 0 X cf := (I+D).7, (I+D) := R := [(I+D) << 1] + 1
srl R 11001011 00111rrr 8 0 + + 0 + P 0 X cf := R.0, R := R >> 1
srl (hl) 11001011 00111110 15 0 + + 0 + P 0 X cf := (hl).0, (hl) := (hl) >> 1
srl (I+D) 11i11101 11001011 dddddddd 00111110 23 0 + + 0 + P 0 X cf := (I+D).0, (I+D) := (I+D) >> 1
srl (I+D)->R 11i11101 11001011 dddddddd 00111rrr 23 0 + + 0 + P 0 X cf := (I+D).0, (I+D) := R := (I+D) >> 1
sub R 10010rrr 4 + + + + + V 1 + a -= R
sub J 11i11101 1001010b 8 + + + + + V 1 + a -= J
sub N 11010110 nnnnnnnn 7 + + + + + V 1 + a -= N
sub (hl) 10010110 7 + + + + + V 1 + a -= (hl)
sub (I+D) 11i11101 10010110 dddddddd 19 + + + + + V 1 + a -= (I+D)

Z80 Instructions: X

Instruction Opcode Cycles S Z X H Y P N C Effect Description
xor R 10101rrr 4 + + + 0 + P 0 0 a := a XOR R Logical eXclusive OR
xor J 11i11101 1010110b 8 + + + 0 + P 0 0 a := a XOR J
xor N 11101110 nnnnnnnn 7 + + + 0 + P 0 0 a := a XOR N
xor (hl) 10101110 7 + + + 0 + P 0 0 a := a XOR (hl)
xor (I+D) 11i11101 10101110 dddddddd 19 + + + 0 + P 0 0 a := a XOR (I+D)
Mnemonic Clock Size SZHPNC Opcode Description Notes
ADC A, r 4 1 *** V0 * 88 + rb Add with Carry A = A + s + CY
ADC A, N 7 2 CE XX
ADC A, (HL) 7 1 8E
ADC A, (IX + N) 19 3 DD 8E XX
ADC A, (IY + N) 19 3 FD 8E XX
ADC HL, BC 15 2 **? V0 * ED 4A Add with Carry HL = HL + ss + CY
ADC HL, DE 15 2 ED 5A
ADC HL, HL 15 2 ED 6A
ADC HL, SP 15 2 ED 7A
ADD A, r 4 1 *** V0 * 80 + rb Add (8-bit) A = A + s
ADD A, N 7 2 C6 XX
ADD A, (HL) 7 1 86
ADD A, (IX + N) 19 3 DD 86 XX
ADD A, (IY + N) 19 3 FD 86 XX
ADD HL, BC 11 1 --?- 0 * 09 Add (16-bit) HL = HL + ss
ADD HL, DE 11 1 19
ADD HL, HL 11 1 29
ADD HL, SP 11 1 39
ADD IX, BC 15 2 --?- 0 * DD 09 Add (IX register) IX = IX + pp
ADD IX, DE 15 2 DD 19
ADD IX, IX 15 2 DD 29
ADD IX, SP 15 2 DD 39
ADD IY, BC 15 2 --?- 0 * FD 09 Add (IY register) IY = IY + rr
ADD IY, DE 15 2 FD 19
ADD IY, IY 15 2 FD 29
ADD IY, SP 15 2 FD 39
AND r 4 1 ***P00 A0+rb Logical AND A=A&s
AND N 7 2 E6 XX
AND (HL) 7 1 A6
AND (IX+N) 19 3 DD A6 XX
AND (IY+N) 19 3 FD A6 XX
BIT b,r 8 2 ?*1?0- CB 40+8*b+rb Test Bit m&{2^b}
BIT b,(HL) 12 2 CB 46+8*b
BIT b,(IX+N) 20 4 DD CB XX 46+8*b
BIT b,(IY+N) 20 4 FD CB XX 46+8*b
CALL NN 17 3 ------ CD XX XX Unconditional Call -(SP)=PC,PC=nn
CALL C,NN 17/1 3 ------ DC XX XX Conditional Call If Carry = 1
CALL NC,NN 17/1 3 D4 XX XX If carry = 0
CALL M,NN 17/1 3 FC XX XX If Sign = 1 (negative)
CALL P,NN 17/1 3 F4 XX XX If Sign = 0 (positive)
CALL Z,NN 17/1 3 CC XX XX If Zero = 1 (ans.=0)
CALL NZ,NN 17/1 3 C4 XX XX If Zero = 0 (non-zero)
CALL PE,NN 17/1 3 EC XX XX If Parity = 1 (even)
CALL PO,NN 17/1 3 E4 XX XX If Parity = 0 (odd)
CCF 4 1 --?-0* 3F Complement Carry Flag CY=~CY
CP r 4 1 ***V1* B8+rb Compare Compare A-s
CP N 7 2 FE XX
CP (HL) 7 1 BE
CP (IX+N) 19 3 DD BE XX
CP (IY+N) 19 3 FD BE XX
CPD 16 2 ****1- ED A9 Compare and Decrement A-(HL),HL=HL-1,BC=BC-1
CPDR 21/1 2 ****1- ED B9 Compare, Dec., Repeat CPD till A=(HL)or BC=0
CPI 16 2 ****1- ED A1 Compare and Increment A-(HL),HL=HL+1,BC=BC-1
CPIR 21/1 2 ****1- ED B1 Compare, Inc., Repeat CPI till A=(HL)or BC=0
CPL 4 1 --1-1- 2F Complement A=~A
DAA 4 1 ***P-* 27 Decimal Adjust Acc. A=BCD format (dec.)
DEC A 4 1 ***V1- 3D Decrement (8-bit) s=s-1
DEC B 4 1 05
DEC C 4 1 0D
DEC D 4 1 15
DEC E 4 1 1D
DEC H 4 1 25
DEC L 4 2 2D
DEC (HL) 11 1 35 (HL)=(HL)-1
DEC (IX+N) 23 3 DD 35 XX (xx-d)=(xx-d)+1
DEC (IY+N) 23 3 FD 35 XX
DEC BC 6 1 ------ 0B Decrement (16-bit) ss=ss-1
DEC DE 6 1 1B
DEC HL 6 1 2B
DEC SP 6 1 3B
DEC IX 10 2 ------ DD 2B Decrement xx=xx-1
DEC IY 10 2 FD 2B
DI 4 1 ------ F3 Disable Interrupts
DJNZ $+2 13/8 1 ------ 10 Dec., Jump Non-Zero B=B-1 till B=0
EI 4 1 ------ FB Enable Interrupts
EX (SP),HL 19 1 ------ E3 Exchange (SP)<->HL
EX (SP),IX 23 2 DD E3 (SP)<->xx
EX (SP),IY 23 2 FD E3
EX AF,AF' 4 1 08 AF<->AF'
EX DE,HL 4 1 EB DE<->HL
EXX 4 1 ------ D9 Exchange qq<->qq' (except AF)
HALT 4 1 ------ 76 Halt
IM 0 8 2 ------ ED 46 Interrupt Mode (n=0,1,2)
IM 1 8 2 ED 56
IM 2 8 2 ED 5E
IN A,(N) 11 2 ------ DB XX Input A=(n)
IN (C) 12 2 ***P0- ED 70 Input* (Unsupported)
IN A,(C) 12 2 ***P0- ED 78 Input r=(C)
IN B,(C) 12 2 ED 40
IN C,(C) 12 2 ED 48
IN D,(C) 12 2 ED 50
IN E,(C) 12 2 ED 58
IN H,(C) 12 2 ED 60
IN L,(C) 12 2 ED 68
INC A 4 1 ***V0- 3C Increment (8-bit) r=r+1
INC B 4 1 04
INC C 4 1 0C
INC D 4 1 14
INC E 4 1 1C
INC H 4 1 24
INC L 4 1 2C
INC (HL) 11 1 34 (HL)=(HL)+1
INC (IX+N) 23 3 DD 34 XX (xx+d)=(xx+d)+1
INC (IY+N) 23 3 FD 34 XX
INC BC 6 1 ------ 03 Increment (16-bit) ss=ss+1
INC DE 6 1 13
INC HL 6 1 23
INC SP 6 1 33
INC IX 10 2 ------ DD 23 Increment xx=xx+1
INC IY 10 2 FD 23
IND 16 2 ?*??1- ED AA Input and Decrement (HL)=(C),HL=HL-1,B=B-1
INDR 21/1 2 ?1??1- ED BA Input, Dec., Repeat IND till B=0
INI 16 2 ?*??1- ED A2 Input and Increment (HL)=(C),HL=HL+1,B=B-1
INIR 21/1 2 ?1??1- ED B2 Input, Inc., Repeat INI till B=0
JP NN 10 3 ------ C3 XX XX Unconditional Jump PC=nn
JP (HL) 4 1 E9 PC=(HL)
JP (IX) 8 2 DD E9 PC=(xx)
JP (IY) 8 2 FD E9
JP C,$NN 10/1 3 ------ DA XX XX Conditional Jump If Carry = 1
JP NC,$NN 10/1 3 D2 XX XX If Carry = 0
JP M,$NN 10/1 3 FA XX XX If Sign = 1 (negative)
JP P,$NN 10/1 3 F2 XX XX If Sign = 0 (positive)
JP Z,$NN 10/1 3 CA XX XX If Zero = 1 (ans.= 0)
JP NZ,$NN 10/1 3 C2 XX XX If Zero = 0 (non-zero)
JP PE,$NN 10/1 3 EA XX XX If Parity = 1 (even)
JP PO,$NN 10/1 3 E2 XX XX If Parity = 0 (odd)
JR $N+2 12 2 ------ 18 XX Relative Jump PC=PC+e
JR C,$N+2 12/7 2 ------ 38 XX Cond. Relative Jump If cc JR(cc=C,NC,NZ,Z)
JR NC,$N+2 12/7 2 30 XX
JR Z,$N+2 12/7 2 28 XX
JR NZ,$N+2 12/7 2 20 XX
LD I,A 9 2 ------ ED 47 Load* dst=src
LD R,A 9 2 ED 4F
LD A,I 9 2 **0*0- ED 57 Load* dst=src
LD A,R 9 2 ED 5F
LD A,r 4 1 ------ 78+rb Load (8-bit) dst=src
LD A,N 7 2 3E XX
LD A,(BC) 7 1 0A
LD A,(DE) 7 1 1A
LD A,(HL) 7 1 7E
LD A,(IX+N) 19 3 DD 7E XX
LD A,(IY+N) 19 3 FD 7E XX
LD A,(NN) 13 3 3A XX XX
LD B,r 4 1 40+rb
LD B,N 7 2 06 XX
LD B,(HL) 7 1 46
LD B,(IX+N) 19 3 DD 46 XX
LD B,(IY+N) 19 3 FD 46 XX
LD C,r 4 1 48+rb
LD C,N 7 2 0E XX
LD C,(HL) 7 1 4E
LD C,(IX+N) 19 3 DD 4E XX
LD C,(IY+N) 19 3 FD 4E XX
LD D,r 4 1 50+rb
LD D,N 7 2 16 XX
LD D,(HL) 7 1 56
LD D,(IX+N) 19 3 DD 56 XX
LD D,(IY+N) 19 3 FD 56 XX
LD E,r 4 1 58+rb
LD E,N 7 2 1E XX
LD E,(HL) 7 1 5E
LD E,(IX+N) 19 3 DD 5E XX
LD E,(IY+N) 19 3 FD 5E XX
LD H,r 4 1 60+rb
LD H,N 7 2 26 XX
LD H,(HL) 7 1 66
LD H,(IX+N) 19 3 DD 66 XX
LD H,(IY+N) 19 3 FD 66 XX
LD L,r 4 1 68+rb
LD L,N 7 2 2E XX
LD L,(HL) 7 1 6E
LD L,(IX+N) 19 3 DD 6E XX
LD L,(IY+N) 19 3 FD 6E XX
LD BC,(NN) 20 4 ------ ED 4B XX XX Load (16-bit) dst=src
LD BC,NN 10 3 01 XX XX
LD DE,(NN) 20 4 ED 5B XX XX
LD DE,NN 10 3 11 XX XX
LD HL,(NN) 20 3 2A XX XX
LD HL,NN 10 3 21 XX XX
LD SP,(NN) 20 4 ED 7B XX XX
LD SP,HL 6 1 F9
LD SP,IX 10 2 DD F9
LD SP,IY 10 2 FD F9
LD SP,NN 10 3 31 XX XX
LD IX,(NN) 20 4 DD 2A XX XX
LD IX,NN 14 4 DD 21 XX XX
LD IY,(NN) 20 4 FD 2A XX XX
LD IY,NN 14 4 FD 21 XX XX
LD (HL),r 7 1 ------ 70+rb Load (Indirect) dst=src
LD (HL),N 10 2 36 XX
LD (BC),A 7 1 02
LD (DE),A 7 1 12
LD (NN),A 13 3 32 XX XX
LD (NN),BC 20 4 ED 43 XX XX
LD (NN),DE 20 4 ED 53 XX XX
LD (NN),HL 16 3 22 XX XX
LD (NN),IX 20 4 DD 22 XX XX
LD (NN),IY 20 4 FD 22 XX XX
LD (NN),SP 20 4 ED 73 XX XX
LD (IX+N),r 19 3 DD 70+rb XX
LD (IX+N),N 19 4 DD 36 XX XX
LD (IY+N),r 19 3 FD 70+rb XX
LD (IY+N),N 19 4 FD 36 XX XX
LDD 16 2 --0*0- ED A8 Load and Decrement (DE)=(HL),HL=HL-1,#
LDDR 21/1 2 --000- ED B8 Load, Dec., Repeat LDD till BC=0
LDI 16 2 --0*0- ED A0 Load and Increment (DE)=(HL),HL=HL+1,#
LDIR 21/1 2 --000- ED B0 Load, Inc., Repeat LDI till BC=0
NEG 8 2 ***V1* ED 44 Negate A=-A
NOP 4 1 ------ 00 No Operation
OR r 4 1 ***P00 B0+rb Logical inclusive OR A=Avs
OR N 7 2 F6 XX
OR (HL) 7 1 B6
OR (IX+N) 19 3 DD B6 XX
OR (IY+N) 19 3 FD B6 XX
OUT (N),A 11 2 ------ D3 XX Output (n)=A
OUT (C),0 12 2 ED 71 Output* (Unsupported)
OUT (C),A 12 2 ED 79 Output (C)=r
OUT (C),B 12 2 ED 41
OUT (C),C 12 2 ED 49
OUT (C),D 12 2 ED 51
OUT (C),E 12 2 ED 59
OUT (C),H 12 2 ED 61
OUT (C),L 12 2 ED 69
OUTD 16 2 ?*??1- ED AB Output and Decrement (C)=(HL),HL=HL-1,B=B-1
OTDR 21/1 2 ?1??1- ED BB Output, Dec., Repeat OUTD till B=0
OUTI 16 2 ?*??1- ED A3 Output and Increment (C)=(HL),HL=HL+1,B=B-1
OTIR 21/1 2 ?1??1- ED B3 Output, Inc., Repeat OUTI till B=0
POP AF 10 1 ------ F1 Pop qq=(SP)+
POP BC 10 1 C1
POP DE 10 1 D1
POP HL 10 1 E1
POP IX 14 2 ------ DD E1 Pop xx=(SP)+
POP IY 14 2 FD E1
PUSH AF 11 1 ------ F5 Push (SP)=qq
PUSH BC 11 1 C5
PUSH DE 11 1 D5
PUSH HL 11 1 E5
PUSH IX 15 2 ------ DD E5 Push -(SP)=xx
PUSH IY 15 2
RES b,r 8 2 ------ CB 80+8*b+rb Reset bit m=m&{~2^b}
RES b,(HL) 15 2 CB 86+8*b
RES b,(IX+N) 23 4 DD CB XX 86+8*b
RES b,(IY+N) 23 4 FD CB XX 86+8*b
RET 10 1 ------ C9 Return PC=(SP)+
RET C 11/5 1 D8 Conditional Return If Carry = 1
RET NC 11/5 1 D0 If Carry = 0
RET M 11/5 1 F8 If Sign = 1 (negative)
RET P 11/5 1 F0 If Sign = 0 (positive)
RET Z 11/5 1 C8 If Zero = 1 (ans.=0)
RET NZ 11/5 1 C0 If Zero = 0 (non-zero)
RET PE 11/5 1 E8 If Parity = 1 (even)
RET PO 11/5 1 E0 If Parity = 0 (odd)
RET 10 1 ------ C9 Return PC=(SP)+
RET C 11/5 1 ------ D8 Conditional Return If Carry = 1
RET NC 11/5 1 D0 If Carry = 0
RET M 11/5 1 F8 If Sign = 1 (negative)
RET P 11/5 1 F0 If Sign = 0 (positive)
RET Z 11/5 1 C8 If Zero = 1 (ans.=0)
RET NZ 11/5 1 C0 If Zero = 0 (non-zero)
RET PE 11/5 1 E8 If Parity = 1 (even)
RET PO 11/5 1 E0 If Parity = 0 (odd)
RETI 14 2 ------ ED 4D Return from Interrupt PC=(SP)+
RETN 14 2 ------ ED 45 Return from NMI PC=(SP)+
RLA 4 1 --0-0* 17 Rotate Left Acc. A={CY,A}<-
RL r 8 2 **0P0* CB 10+rb Rotate Left m={CY,m}<-
RL (HL) 15 2 CB 16
RL (IX+N) 23 4 DD CB XX 16
RL (IY+N) 23 4 FD CB XX 16
RLCA 4 1 --0-0* 07 Rotate Left Cir. Acc. A=A<-
RLC r 8 2 **0P0* CB 00+rb Rotate Left Circular m=m<-
RLC (HL) 15 2 CB 06
RLC (IX+N) 23 4 DD CB XX 06
RLC (IY+N) 23 4 FD CB XX 06
RLD 18 2 **0P0- ED 6F Rotate Left 4 bits {A,(HL)}={A,(HL)}<- ##
RRA 4 1 --0-0* 1F Rotate Right Acc. A=->{CY,A}
RR r 8 2 **0P0* CB 18+rb Rotate Right m=->{CY,m}
RR (HL) 15 2 CB 1E
RR (IX+N) 23 4 DD CB XX 1E
RR (IY+N) 23 4 FD CB XX 1E
RRCA 4 1 --0-0* 0F Rotate Right Cir.Acc. A=->A
RRC r 8 2 **0P0* CB 08+rb Rotate Right Circular m=->m
RRC (HL) 15 2 CB 0E
RRC (IX+N) 23 4 DD CB XX 0E
RRC (IY+N) 23 4 FD CB XX 0E
RRD 18 2 **0P0- ED 67 Rotate Right 4 bits {A,(HL)}=->{A,(HL)} ##
RST 0 11 1 ------ C7 Restart (p=0H,8H,10H,...,38H)
RST 08H 11 1 CF
RST 10H 11 1 D7
RST 18H 11 1 DF
RST 20H 11 1 E7
RST 28H 11 1 EF
RST 30H 11 1 F7
RST 38H 11 1 FF
SBC r 4 1 ***V1* 98+rb Subtract with Carry A=A-s-CY
SBC A,N 7 2 DE XX
SBC (HL) 7 1 9E
SBC A,(IX+N) 19 3 DD 9E XX
SBC A,(IY+N) 19 3 FD 9E XX
SBC HL,BC 15 2 **?V1* ED 42 Subtract with Carry HL=HL-ss-CY
SBC HL,DE 15 2 ED 52
SBC HL,HL 15 2 ED 62
SBC HL,SP 15 2 ED 72
SCF 4 1 --0-01 37 Set Carry Flag CY=1
SET b,r 8 2 ------ CB C0+8*b+rb Set bit m=mv{2^b}
SET b,(HL) 15 2 CB C6+8*b
SET b,(IX+N) 23 4 DD CB XX C6+8*b
SET b,(IY+N) 23 4 FD CB XX C6+8*b
SLA r 8 2 **0P0* CB 20+rb Shift Left Arithmetic m=m*2
SLA (HL) 15 2 CB 26
SLA (IX+N) 23 4 DD CB XX 26
SLA (IY+N) 23 4 FD CB XX 26
SRA r 8 2 **0P0* CB 28+rb Shift Right Arith. m=m/2
SRA (HL) 15 2 CB 2E
SRA (IX+N) 23 4 DD CB XX 2E
SRA (IY+N) 23 4 FD CB XX 2E
SLL r 8 2 **0P0* CB 30+rb Shift Left Logical* m={0,m,CY}<-

(SLL Instructions are unsupported)

SLL (HL) 15 2 CB 36
SLL (IX+N) 23 4 DD CB XX 36
SLL (IY+N) 23 4 FD CB XX 36
SRL r 8 2 **0P0* CB 38+rb Shift Right Logical m=->{0,m,CY}
SRL (HL) 15 2 CB 3E
SRL (IX+N) 23 4 DD CB XX 3E
SRL (IY+N) 23 4 FD CB XX 3E
SUB r 4 1 ***V1* 90+rb Subtract A=A-s
SUB N 7 2 D6 XX
SUB (HL) 7 1 96
SUB (IX+N) 19 3 DD 96 XX
SUB (IY+N) 19 3 FD 96 XX
XOR r 4 1 ***P00 A8+rb Logical Exclusive OR A=Axs
XOR N 7 2 EE XX
XOR (HL) 7 1 AE
XOR (IX+N) 19 3 DD AE XX
XOR (IY+N) 19 3 FD AE XX

CPC Timings

Instruction µs Size I/O
ADC/ADD/SBC/SUB A, (HL) 2 1
ADC/ADD/SBC/SUB A, (IX/IY+d) 5 3
ADC/ADD/SBC/SUB A, A/B/C/D/E/H/L 1 1
ADC/ADD/SBC/SUB A, HX/LX/HY/LY 2 2
ADC/ADD/SBC/SUB A, d 2 2
ADD/SUB HL, BC/DE/HL/SP 3 1
ADD/SUB IX/IY, BC/DE/HL/SP 4 2
AND/OR/XOR A, (HL) 2 1
AND/OR/XOR A, (IX/IY+d) 5 3
AND/OR/XOR A, A/B/C/D/E/H/L 1 1
AND/OR/XOR A, HX/LX/HY/LY 2 2
AND/OR/XOR A, d 2 2
BIT x, (HL) 3 2
BIT x, (IX/IY+d) 6 4
BIT x, A/B/C/D/E/H/L 2 2
CALL cond, aa 5/3 3
CALL aa 5 3
CCF/SCF 1 1
CP A, (HL) 2 1
CP A, (IX/IY+d) 5 3
CP A, A/B/C/D/E/H/L 1 1
CP A, HX/LX/HY/LY 2 2
CP A, d 2 2
CPD/CPI 4 2
CPDR/CPIR 6/4 2
CPL 1 1
DAA 1 1
DEC/INC (HL) 3 1
DEC/INC (IX/IY+d) 6 3
DEC/INC A/B/C/D/E/H/L 1 1
DEC/INC HX/LX/HY/LY 2 2
DEC/INC BC/DE/HL/SP 2 1
DEC/INC IX/IY 3 2
DI/EI 1 1
DJNZ 4/3 2
EX (SP), HL 6 1
EX (SP), IX/IY 7 2
EX AF, AF’ 1 1
EX DE, HL 1 1
EXX 1 1
HALT 1 1
IM m 2 2
IN A/B/C/D/E/H/L, (C) 4 2 4
IN A, (d) 3 2 3
IN F 4 2 4
IND/INI 5 2 4
INDR/INIR 6/5 2 4
JP aa 3 3
JP cond, aa 3 3
JP (HL) 1 1
JP (IX/IY) 2 2
JR a 3 2
JR cond, a 3/2 2
LD (BC/DE), A 2 1
LD (HL), A/B/C/D/E/H/L 2 1
LD (HL),d 3 2
LD (IX/IY+d), A/B/C/D/E/H/L 5 3
LD (IX/IY+d), d’ 6 4
LD (aa), A 4 3
LD (aa), BC/DE/SP/IX/IY 6 4
LD (aa), HL 5 3
LD A, (BC/DE) 2 1
LD A/B/C/D/E/H/L, (HL) 2 1
LD A/B/C/D/E/H/L, (IX/IY+d) 5 3
LD A,(aa) 4 3
LD A/B/C/D/E/H/L, A/B/C/D/E/H/L 1 1
LD A/B/C/D/E/H/L, d 2 2
LD HX/LX, A/B/C/D/E/HX/LX 2 3
LD HY/LY, A/B/C/D/E/HY/LY 2 3
LD BC/DE/HL/SP, dd 3 3
LD IX/IY, dd 4 4
LD SP, IX/IY 3 2
LD SP, HL 2 1
LD HX/LX/HY/LY, d 3 3
LD BC/DE/HL/SP/IX/IY, (aa) 6 4
LD HL, (aa) 5 3
LD A, I/R 3 2
LD I/R, A 3 2
LDD/LDI 5 2
LDDR/LDIR 6/5 2
NEG 2 2
NOP 1 1
OUT (C), A/B/C/D/E/H/L 4 2 3*
OUT (C), 0 4 2 3*
OUT (d), A 3 2 3
OUTD/OUTI 5 2 5
OTDR/OTIR 6/5 2 5
POP AF/BC/DE/HL 3 1
POP IX/IY 4 2
PUSH AF/BC/DE/HL 4 1
PUSH IX/IY 5 2
RES/SET x, (HL) 4 2
RES/SET x, (IX/IY+d) 7 4
RES/SET x, (IX/IY+d), A/B/C/D/E/H/L 7 4
RES/SET x, A/B/C/D/E/H/L 2 2
RET 3 1
RET cond 4/2 1
RETI/RETN 4 2
RL/RLC/RR/RRC/SLA/SLL/SRA/SRL (HL) 4 2
RL/RLC/RR/RRC/SLA/SLL/SRA/SRL (IX/IY+d) 7 4
RL/RLC/RR/RRC/SLA/SLL/SRA/SRL (IX/IY+d), A/B/C/D/E/H/L 7 4
RL/RLC/RR/RRC/SLA/SLL/SRA/SRL A/B/C/D/E/H/L 2 2
RLA/RLCA/RRA/RRCA 1 1
RLD/RRD 5 2
RST 0/08h/10h/18h/20h/28h/30h/38h 4 1

Notes:

  • x=[0..7], d=[0..ff], m=[0..2], aa=[0..ffff], a=[0..ff]
  • * Some exceptions exist
  • All instructions containing (IX/IY+d) add 3µs and 2 bytes compared to their (HL) variants
  • Contrarily to what the syntax of the instructions JP (HL/IX/IY) suggest, PC will be loaded with the contents of the register itself, not the indexed value. Those instructions should be understood as JP HL/IX/IY
  • Despite having different names and opcodes, RETI and RETN are in fact the exact same instruction