Programming:Integer Multiplication

From CPCWiki - THE Amstrad CPC encyclopedia!
Revision as of 13:42, 9 August 2006 by Octoate (Talk | contribs) (Fast 8bit*8bit multiplication)

Jump to: navigation, search

Classic 8bit * 8bit Unsigned

Input: H = Multiplier, E = Multiplicand, L = 0, D = 0

Output: HL = Product

sla	h		; optimised 1st iteration
jr	nc,$+3
ld	l,e

add	hl,hl		; unroll 7 times
jr	nc,$+3		; ...
add	hl,de		; ...


Classic 16bit * 8bit Unsigned

Input: A = Multiplier, DE = Multiplicand, HL = 0, C = 0

Output: A:HL = Product

add	a,a		; optimised 1st iteration
jr	nc,$+4
ld	h,d
ld	l,e

add	hl,hl		; unroll 7 times
rla			; ...
jr	nc,$+4		; ...
add	hl,de		; ...
adc	a,c		; ...


Fast 8bit * 8bit Unsigned (using log / antilog tables)

The original routine was written by Jeff Frohwein for the Nintendo Gameboy. You can find it on Devrs.com.

Because of the usage of log / antilog tables this routine is less accurate, but very fast. It takes advantage of the fact that if you take the log of two numbers, add the results and then take the antilog of the total you have done the equivalent of multiplying the two numbers:

	x^a * x^b = x^(a+b)

	a * b = x^(logx(a) + logx(b))

Input: B = Multiplier, C = Multiplicant

Output: DE = Product


FastMult:
		ld      l,c
		ld      h,&82
		ld      d,(hl)          ; d = 32 * log_2(c)
		
		ld      l,b
		ld      a,(hl)          ; a = 32 * log_2(b)
		
		add     a,d
		ld      l,a
		ld      a,0
		adc     a,0
		ld      h,a             ; hl = d + a
		
		add     hl,hl
		set     2,h             ; hl = hl + $0400
		set     7,h             ; hl = hl + &8000
		
		ld      e,(hl)
		inc     hl
		ld      d,(hl)          ; de = 2^((hl)/32)
		
		ret

; 32*Log_2(x) Table
;
;   FOR A=0 TO 255
;     C=4 
;     B=2
;     FOR Z=1 TO 10
;       IF (2^C) > A THEN C=C-B ELSE C=C+B
;       B=B/2
;     NEXT Z
;     PRINT INT(C*32);",";
;   NEXT A
ORG &8200

logtable:
		db 0 , 0 , 32 , 50 , 64 , 74 , 82 , 89 , 96 , 101 , 106 , 110 , 114 , 118 , 121
		db 125 , 128 , 130 , 133 , 135 , 138 , 140 , 142 , 144 , 146 , 148 , 150 , 152
		db 153 , 155 , 157 , 158 , 160 , 161 , 162 , 164 , 165 , 166 , 167 , 169 , 170
		db 171 , 172 , 173 , 174 , 175 , 176 , 177 , 178 , 179 , 180 , 181 , 182 , 183
		db 184 , 185 , 185 , 186 , 187 , 188 , 189 , 189 , 190 , 191 , 192 , 192 , 193
		db 194 , 194 , 195 , 196 , 196 , 197 , 198 , 198 , 199 , 199 , 200 , 201 , 201
		db 202 , 202 , 203 , 204 , 204 , 205 , 205 , 206 , 206 , 207 , 207 , 208 , 208
		db 209 , 209 , 210 , 210 , 211 , 211 , 212 , 212 , 213 , 213 , 213 , 214 , 214
		db 215 , 215 , 216 , 216 , 217 , 217 , 217 , 218 , 218 , 219 , 219 , 219 , 220
		db 220 , 221 , 221 , 221 , 222 , 222 , 222 , 223 , 223 , 224 , 224 , 224 , 225
		db 225 , 225 , 226 , 226 , 226 , 227 , 227 , 227 , 228 , 228 , 228 , 229 , 229
		db 229 , 230 , 230 , 230 , 231 , 231 , 231 , 231 , 232 , 232 , 232 , 233 , 233
		db 233 , 234 , 234 , 234 , 234 , 235 , 235 , 235 , 236 , 236 , 236 , 236 , 237
		db 237 , 237 , 237 , 238 , 238 , 238 , 238 , 239 , 239 , 239 , 239 , 240 , 240
		db 240 , 241 , 241 , 241 , 241 , 241 , 242 , 242 , 242 , 242 , 243 , 243 , 243
		db 243 , 244 , 244 , 244 , 244 , 245 , 245 , 245 , 245 , 245 , 246 , 246 , 246
		db 246 , 247 , 247 , 247 , 247 , 247 , 248 , 248 , 248 , 248 , 249 , 249 , 249
		db 249 , 249 , 250 , 250 , 250 , 250 , 250 , 251 , 251 , 251 , 251 , 251 , 252
		db 252 , 252 , 252 , 252 , 253 , 253 , 253 , 253 , 253 , 253 , 254 , 254 , 254
		db 254 , 254 , 255 , 255 , 255 , 255 , 255


; AntiLog 2^(x/32) Table
;
;   FOR A=0 to 510
;   PRINT INT(2^(A/32)+.5);",";
;   NEXT A
ORG &8400

antilog:
		dw 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2
		dw 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2
		dw 2 , 2 , 2 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 4 , 4
		dw 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 6
		dw 6 , 6 , 6 , 6 , 6 , 6 , 6 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 8 , 8 , 8 , 8 , 8 , 9
		dw 9 , 9 , 9 , 9 , 10 , 10 , 10 , 10 , 10 , 11 , 11 , 11 , 11 , 12 , 12 , 12 , 12
		dw 13 , 13 , 13 , 13 , 14 , 14 , 14 , 15 , 15 , 15 , 16 , 16 , 16 , 17 , 17 , 17
		dw 18 , 18 , 19 , 19 , 19 , 20 , 20 , 21 , 21 , 22 , 22 , 23 , 23 , 24 , 24 , 25
		dw 25 , 26 , 26 , 27 , 27 , 28 , 29 , 29 , 30 , 31 , 31 , 32 , 33 , 33 , 34 , 35
		dw 36 , 36 , 37 , 38 , 39 , 40 , 41 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49
		dw 50 , 52 , 53 , 54 , 55 , 56 , 57 , 59 , 60 , 61 , 63 , 64 , 65 , 67 , 68 , 70
		dw 71 , 73 , 74 , 76 , 78 , 79 , 81 , 83 , 85 , 87 , 89 , 91 , 92 , 95 , 97 , 99
		dw 101 , 103 , 105 , 108 , 110 , 112 , 115 , 117 , 120 , 123 , 125 , 128 , 131
		dw 134 , 137 , 140 , 143 , 146 , 149 , 152 , 156 , 159 , 162 , 166 , 170 , 173
		dw 177 , 181 , 185 , 189 , 193 , 197 , 202 , 206 , 211 , 215 , 220 , 225 , 230
		dw 235 , 240 , 245 , 251 , 256 , 262 , 267 , 273 , 279 , 285 , 292 , 298 , 304
		dw 311 , 318 , 325 , 332 , 339 , 347 , 354 , 362 , 370 , 378 , 386 , 395 , 403
		dw 412 , 421 , 431 , 440 , 450 , 459 , 470 , 480 , 490 , 501 , 512 , 523 , 535
		dw 546 , 558 , 571 , 583 , 596 , 609 , 622 , 636 , 650 , 664 , 679 , 693 , 709
		dw 724 , 740 , 756 , 773 , 790 , 807 , 825 , 843 , 861 , 880 , 899 , 919 , 939
		dw 960 , 981 , 1002 , 1024 , 1046 , 1069 , 1093 , 1117 , 1141 , 1166 , 1192
		dw 1218 , 1244 , 1272 , 1300 , 1328 , 1357 , 1387 , 1417 , 1448 , 1480 , 1512
		dw 1545 , 1579 , 1614 , 1649 , 1685 , 1722 , 1760 , 1798 , 1838 , 1878 , 1919
		dw 1961 , 2004 , 2048 , 2093 , 2139 , 2186 , 2233 , 2282 , 2332 , 2383 , 2435
		dw 2489 , 2543 , 2599 , 2656 , 2714 , 2774 , 2834 , 2896 , 2960 , 3025 , 3091
		dw 3158 , 3228 , 3298 , 3371 , 3444 , 3520 , 3597 , 3676 , 3756 , 3838 , 3922
		dw 4008 , 4096 , 4186 , 4277 , 4371 , 4467 , 4565 , 4664 , 4767 , 4871 , 4978
		dw 5087 , 5198 , 5312 , 5428 , 5547 , 5668 , 5793 , 5919 , 6049 , 6182 , 6317
		dw 6455 , 6597 , 6741 , 6889 , 7039 , 7194 , 7351 , 7512 , 7677 , 7845 , 8016
		dw 8192 , 8371 , 8555 , 8742 , 8933 , 9129 , 9329 , 9533 , 9742 , 9955 , 10173
		dw 10396 , 10624 , 10856 , 11094 , 11337 , 11585 , 11839 , 12098 , 12363 , 12634
		dw 12910 , 13193 , 13482 , 13777 , 14079 , 14387 , 14702 , 15024 , 15353 , 15689
		dw 16033 , 16384 , 16743 , 17109 , 17484 , 17867 , 18258 , 18658 , 19066 , 19484
		dw 19911 , 20347 , 20792 , 21247 , 21713 , 22188 , 22674 , 23170 , 23678 , 24196
		dw 24726 , 25268 , 25821 , 26386 , 26964 , 27554 , 28158 , 28774 , 29404 , 30048
		dw 30706 , 31379 , 32066 , 32768 , 33485 , 34219 , 34968 , 35734 , 36516 , 37316
		dw 38133 , 38968 , 39821 , 40693 , 41584 , 42495 , 43425 , 44376 , 45348 , 46341
		dw 47356 , 48393 , 49452 , 50535 , 51642 , 52772 , 53928 , 55109 , 56316 , 57549
		dw  58809 , 60097 , 61413 , 62757