This article contains source codes and programming examples. You may also have a look at
Assembler
Algorithms
CP/M
- A simple 'Hello World' program for CP/M using BDOS
- A simple 'Hello World' program for CP/M using BIOS
- Executing firmware functions from within CP/M 2.1
- Executing firmware functions from within CP/M 2.1 or CP/M plus
- Executing firmware functions from within CP/M 2.1
- Executing firmware functions from within CP/M plus
CPC Plus
- Amstrad CPC plus sprite format
- Convert CPC sprites to Plus hardware sprites
- Sprites Multiplexing
- Hardware sprites
- Horizontal scroll
- RLE hardware sprites
- Screen splitting
- Vertical scroll
- Operation of Z80 interrupt mode 0 in the CPC plus design
- Simple Raster Example 1 (uses CPC plus features)
- Simple Raster Example 2 (uses CPC plus features)
- Unlocking ASIC
Devices
File access
Floppy disk
- A simple disc copier using BDOS functions
- A simple disc formatter using BDOS functions
- An example loader
- Catalog a disc and retrieve a directory
- Detecting an Amstrad or Vortex disc controler
- Formatting a track on a disc
- Reading a sector from a disc
- Reading and writing the boot sector of a SYSTEM/VENDOR disc
- Writing a sector to disc
Graphics
- Display a 8-bit number in binary
- Display a 8-bit number in hex
- Display a byte as a 3-digit decimal number
- Display and update Scores
- Distorting the screen using register 2 of the CRTC (Horizontal Sync Position)
- Fast plot
- Fast Sprites by Executioner
- Fast Textoutput by Prodatron
- Hardware Scrolling by Executioner
- Hardware Scrolling 2
- Hardware scrolling the screen horizontally byte-by-byte using the CRTC
- Hardware scrolling the screen using the CRTC
- Next / previous line calculation
- Overscan
- Plotting a sprite using character matrices
- Simple Raster Example
- Simple Split Raster Example
- Synchronising with the CRTC and display
Interrupts
Keyboard
Other routines
Sound
- Programming:Tutorial - Understanding the fundamentals of BASIC SOUND and the Firmware SOUND QUEUE
- Source code to show 0x0ff is always returned when reading PSG port B
- Source code to show it is possible to store data in PSG register 14 and 15 (port A and port B)
- Source code to show it is possible to store data in PSG register 14 and 15 even if the port has been set to input
- Source code to show that some registers always return 0 in some bits
- Source code to show that when a port is read in output mode; the data read will be ANDed with the inputs to that port