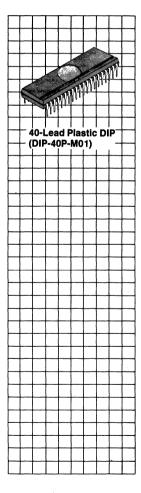
Advanced Products

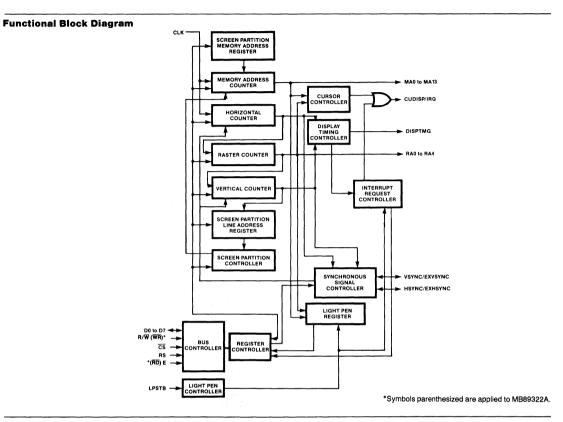
FUJITSU

MB89321A, MB89322A **CMOS Programmable CRT Controller**

October 1986 Edition 1.0

Description


The MB89321A/MB89322A Programmable CRT Controllers are single chip CMOS devices used to interface CRT raster scan displays with microcomputer systems. Both devices operate on a single +5 V power supply and have TTL-compatible I/O. The MB89321A interfaces to 6800 family microprocessors; the MB89322A to the 8080.


The MB89321A/MB89322A refresh the display by buffering information from main memory using thirty-three internal registers and keeping track of the display position of the screen. Both devices are designed to allow simple interfacing to most raster scan CRTs with a minimum of external hardware and software overhead.

Features

- Programmable Screen and **Character Formats**
- **Cursor Control (3 types)**
- Selectable Scan Modes (3) types)
- Light Pen Detection
- Refresh Memory Address Function
- Screen Partitioning (up to 4 partitions)
- Independent Paging/Scrolling for Each
- Screen Partition Smooth Scrolling (up to 4 screens simultaneously)
- Status Generation and Processor Interrupt Generation by Vertical Blanking or Light Pen
- External Sync for TV Superimposition (synchronous mode) or Interface to Other CRT **Controllers (master-slave** mode)
- Double-Size Vertical Display using Raster Interpolation
- 4.0 MHz Clock Rate
- Single +5 V Power Supply
 CMOS Process

 - 40-pin Plastic DIP

Pin Assignment

*Symbols parenthesized are applied to MB89322A.

4

Pin Descriptions MB89321A(MB89322A)

Pin Pin Number Symbol Name Function Ground Ground Vss Input used for device reset. When RESET goes low: Internal counters are cleared and stopped; All outputs go low, and; Control registers and status register are cleared, other RESET 2 Reset internal registers unaffected. Enabled only when LPSTB is low. RESET goes high, display is initiated immediately. Control registers R30 and R31 must be initialized by software after reset is released. Character detection input. When high, the memory address Light Pen LPSTB is loaded in the light pen register, the raster address in the 3 Strobe light pen raster register, and the status bit set. 4 to MA0 to Memory Refresh memory address output 17 **MA13** Address Display 18 DISPTMG Display timing output. Set to high during display. Timing Cursor Cursor display timing output/interrupt request output. Set Display CUDISP/ to high during display. Setting the control register enables 19 Timing/ IRO a high-level interrupt request signal to be output while the Interrupt display timing signal is low. Request Power 20 Vcc +5 V power supply. Supply CLK 21 Clock Clock input. Goes low during EXHSYNC in TV sync mode. R/W Read/Write MPU read/write input. 22 (MPU write input) (WR)* (Write) MPU enable input. Enable F 23 (RD)* (MPU read input) (Read) Internal register select input. Normally connected to the Register 24 RS least significant bit (A0) of the address bus. When high, select selects internal registers; when low, the address register. Chip Chip select input. Goes low when the MPU accesses the CS 25 select CRTC. 26 to D7 to Data Bus MPU data bus pins 33 D0 34 to RA4 to Raster Raster address output 38 RA0 Address Hsync HSYNC/ Output/ Horizontal sync output/external horizontal sync input. 39 EXHSYNC Hsync When reset, becomes the horizontal sync output. Input Vsvnc VSYNC/ Output/ Vertical sync output/external vertical sync input. When 40 EXVSYNC Vsync reset, becomes the vertical sync output. Input

*Symbols parenthesized are applied to MB89322A.

Internal Registers and Functions

		Address					Deniete-				Data Bit				
CS	RS 4 3 2 1 0 Numbe		Register Number	Register Name	Read Write				4 3	3 2 1 0					
1	x	x	x	x	x	x		Invalid					84	Act -	
0	0	x	x	x	X	x	AR	Address Register	w	6.7%s					
0	1	0	0	0	0	0	R0	Total Number of Characters in Line (*)	w						
0	1	0	0	0	0	1	R1	Number of Characters Displayed in Line	w						
0	1	0	0	0	1	0	R2	Horizontal Sync Position (*)	w						
0	1	0	0	0	1	1	R3	Sync Signal Pulse Width	w	V	3 V 2	V1 \	′0 НЗ	H2 H	H0
0	1	0	0	1	0	0	R4	Total Number of Lines (*)	w						
0	1	0	0	1	0	1	R5	Total Raster Adjust	w						
0	1	0	0	1	1	0	R6	Number of Lines Displayed	w						
0	1	0	0	1	1	1	R7	Vertical Sync Position (*)	w						
0	1	0	1	0	0	0	R8	Scan Mode/Skew	w	С	1 C	DD1	D0		11 10
0	1	0	1	0	0	1	R9	Maximum Raster Address	w						
0	1	0	1	0	1	0	R10	Cursor Start Raster	w		B	B0			
0	1	0	1	0	1	1	R11	Cursor End Raster	w						
0	1	0	1	1	0	0	R12	Start Address 1	R/W						
0	1	0	1	1	0	1	R13	Start Address 1	n/ v						
0	1	0	1	1	1	0	R14	Cursor	R/W						
0	1	0	1	1	1	1	R15		11/ 11						
0	1	1	0	0	0	0	R16	Light Pen	R						
0	1	1	0	0	0	1	R17	Light Fen	n						
0	1	1	0	0	1	0	R18	Screen 2 Display Start Position (*)	R/W						
0	1	1	0	0	1	1	R19	Start Address 2	R/W						
0	1	1	0	1	0	0	R20	Start Address 2	n/ W						
0	1	1	0	1	0	1	R21	Screen 3 Display Start Position (*)	R/W						
0	1	1	0	1	1	0	R22	Start Address 3	B/W						
0	1	1	0	1	1	1	R23	Start Address 5	F1/ ¥¥						
0	1	1	1	0	0	0	R24	Screen 4 Display Start Position (*)	R/W						
0	1	1	1	0	0	1	R25	Start Address 4	B/W						
0	1	1	1	0	1	0	R26	Start Address 4	F1/ VV						
0	1	1	1	0	1	1	R27	Vertical Sync Position Fine Adjust	w						
0	1	1	1	1	0	0	R28	Light Pen Raster	R	DF	-				
0	1	1	1	1	0	1	R29	Smooth Scroll	R/W						
0	1	1	1	1	1	0	R30	Control	w	VE	vs	IB IL	SYT	V P1 F	20
0	1	1	1	1	1	1	R31	Control/Status	R/W	SS	ass	2551	SS0R	I* E	SB S

*Note: Values written to these registers are one (1) less than the set values; refer to Notes on operation

Register Description

Address Register (AR)

Sets the number of the internal register. Unchanged until a new value is written.

Total Number of Characters in Line Register (RO)

Sets horizontal scan sync. Settings indicate number of characters, and are determined by the formula:

Total Number of Characters in Line x Character Period = Horizontal Scan Period

Values written to the register are 1 less than the set values.

Number of Characters Displayed in Line Register (R1)

Sets the horizontal display period. Settings indicate number of characters.

Horizontal Sync Position Register (R2)

Sets the horizontal sync signal position. Settings indicate number of characters. Values written to the register are 1 less than the set values.

Sync Signal Pulse Width Register (R3)

MSI	3						LSB	
V3	V2	V1	٧O	нз	H2	H1	H0	

Sets the sync signal pulse width. The 4 high-order bits are used for the vertical sync signal, the 4 low-order bits for the horizontal sync signal. the TV sync mode, the 4 low-order bits are used as the horizontal back porch.

Total Number of Lines Register (R4)

Used the the total raster adjust register to set vertical sync (field sync is set by number of rasters). Setting is in number of lines. Values written to the register are 1 less than the set value.

Total Raster Adjust Register (R5)

Used to fine tune the vertical sync. Settings indicate number of rasters, and must be less than the maximum raster address. Vertical sync is determined by the formula:

Vertical Sync = Total Number of Lines x Maximum Raster Address + Total Raster Adjust

Number of Lines Displayed Register (R6)

Sets the vertical display period. Settings indicate number of lines.

Vertical Sync Position Register (R7)

Used with the vertical sync position fine adjust register (R27) to set vertical sync position using raster count. Settings indicate number of lines. Values written to the register are 1 less than the set values.

Scan Mode/Skew Register (R8)

MSE	3			1.	1	LSB	
C1	C0	D1	D0		11	10	

Sets cursor display signal and display timing signal skew, and the scan mode. Bit functions are as shown below:

C1 C0 CUDISP Output

0	0	Output without skew
0	1	Skewed by 1 character
1.	0	Skewed by 2 characters
1	1	No CUDISP output

D1 D0 DISPTMG Output

0	0	Output without skew
0	1	Skewed by 1 character
1	0	Skewed by 2 characters
1	1	No DISPTMG output

I1 IO Scan Mode

0	0	Non-interlace mode
0	1	Interlace mode
1	0	Non-interlace mode
1	1	Interlace and video mode

Maximum Raster Address Register (R9)

Sets the number of rasters in a line. In interlace and noninterlace modes, the value written is 1 less than the set value; in interlace and video mode, 2 less. Examples of settings in each mode are as follows:

Interlace mode

Ω.	
	 0
1	
_	 2
3	 _
4	

Raster count - 5 Value written - 4

Non-interlace mode

0	
1	
2	
3	

Raster count - 5 Value written - 4

Interlace & video modes

•								_	1
									_
									3

Raster count - 5 Value written - 3

Non-interlace mode and Interlace mode: Written value = Setting value -1 Interlace mode & video mode: Written value = Setting value -2

Register Description

(Continued)

Cursor Start Raster Register (R10)

MSB			I	LSB	
B1	BO				

Sets the cursor display mode and the display start raster. Settings indicate number of rasters. Cursor display mode bit function is as follows:

Cursor Display B1 B0 Mode

0	0	Displays without blinking
0	1	No display
1	0	Blinks in 16-field sync
1	1	Blinks in 32-field sync

Cursor End Raster Register (R11)

Sets the cursor display end raster. Settings indicate number of rasters.

Start Address Registers (R12, R13, R19, R20, R22, R23, R25, R26)

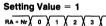
Four sets of 14-bit paired registers used to set the starting memory address for screen display that enable independent paging/scrolling when screen is partitioned. Registers are for Start Address 1 (R12, R13), Start Address 2 (R19, R20), Start Address 3 (R22, R23) and Start Address 4 (R25, R26).

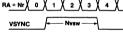
Cursor Registers (R14, R15)

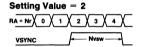
14-bit paired registers used to set the cursor display memory address.

Light Pen Registers (R16, R17)

14-bit paired registers to which the memory address is written when the light pen strobe signal goes high. Memory address value must be compensated in software for delay in the light pen detection circuit.


Light Pen Raster Register (R28)


MSB L	-5
DP	


Register to which the raster address and display status bit are written when the light pen strobe signal goes high. When the light pen register or light pen raster register are written to during the display period, the display status bit is set to 1; during blank period, reset to 0.

Vertical Sync Position Fine Adjust Register (R27)

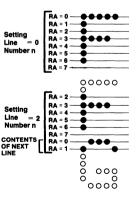
Used to fine-tune the vertical sync signal within the line set by the vertical sync position register. Settings indicate number of rasters. Examples of settings are shown below:

Setting 0 must not be written as it will cause the control register to disable the vertical sync position adjust register, resulting in a vertical sync signal output of RA = 0. The set value must be less than the maximum raster address.

Display Start Position Registers (R18, R21, R24)

Sets the starting line numbers for display start addresses 2, 3, and 4 when screen is partitioned. See following figure. Values written to the register are 1 less than the line number; 0 must not be written. Examples of settings are shown below:

Line Number Display Screen


0 1 2	Screen 1 (Start address 1)
3	Screen 2 (Start address 2, Register 18)
4 5 6 7	Screen 3 (Start address 3, Register 21)
8 9	Screen 4 (Start address 4, Register 24)

Value written for start position 2 = 2 Value written for start position 3 = 3 Value written for start position 4 = 7

Smooth Scroll Register (R29)

Sets the starting raster address within a line. Setting indicates number of rasters. Smooth scrolling can be used in interlace and non-interlace modes only.

Settings are valid for screens specified by SS3 to SS0 of the control/status register. Settings must be less than the maximum raster address. Examples of settings are shown below:

Register Description

(Continued)

Control Register (R30)

MS	3						LSB
VE	vs	IB	IL	SY	тν	P1	P0

Controls the external sync function, interrupt function, vertical sync position fine adjust function and screen

partition function. This register must be initialized by software after reset is released. Bit functions are as shown below:

VE VS TV External Sync Function

0	0	0	Both VSYNC and HSYNC are in output mode. DISPTMG is active. External sync operation is disabled.
0	1	0	Outputs VSYNC for odd-numbered fields only in interlace mode. No VSYNC output when the programmed values of max. raster address and vertical sync position are odd numbers in interlace & video mode.
1	0	0	EXVSYNC is in input mode but external sync signal ignored. DISPTMG is active.
1	1	0	EXVSYNC is in input mode and external sync signal is accepted. DISPTMG goes low (disabled).
0	0	1	Disallowed
0	1	1	Disallowed
1	0	1	Both EXVSYNC and EXHSYNC are in input mode and external sync signal is accepted. DISPTMG output is active.
1	1	1	Both EXVSYNC and EXHSYNC are in input mode and external sync signal is accepted. DISPTMG goes low (disabled).

Notes:

1. When VS = 1, DISPTMG goes low.

2. When TV = 0, indicates master-slave mode. When TV = 1, indicates TV sync mode.

3. In TV sync mode, the horizontal back porch must be set using the horizontal sync pulse

width register. 4. In TV sync mode, the internal control is in non-interlace mode.

IR IL Interrupt Function

0	0	None	
0	1	With light pen strobe	
1	0	With vertical blanking	
1	1	With light pen or vertical blanking	

Note: Interrupt signal is output for CUDISP while DISPTMG is low.

SY	Vertical Sync Position Fine Adjust Function	
0	Vertical sync position fine adjust register disabled	
1	Vertical sync position fine adjust register enabled	

P1	PO	Screen Partition Function
0	0	Start Address 1 enabled
0	1	Start addresses 1 and 2 enabled; screen partitioned into two sections
1	0	Start addresses 1, 2, and 3 enabled; screen partitioned into three sections
1	1	Start addresses 1, 2, 3, and 4 enabled; screen partitioned into four sections

Note: Screen address 1 is always displayed starting from line number 0.

Register Description

(Continued)

Control/Status Register (R31)

Controls the smooth scrolling and raster interpolation functions, and performs read/write of the status register. This register must be initialized by software after reset is released. Control bit functions are as follows:

Control Bits	Function
SS3 to SS0	Smooth scrolling control bits; when set to 1 the smooth scrolling register is enabled. Bits correspond to the screens as follows: SS3 = screen 4 SS2 = screen 3 SS1 = screen 2 SS0 = screen 1
RI	Raster interpolation bit. Set to 1, raster interpolation is performed. The raster counter is incremented every two rasters, doubling the vertical sync rate. Therefore, in this case, registers related to vertical sync control must be reprogrammed. The raster interpolation function can't be used in external sync mode and interlace & video mode.

Notes: 1. "0s" must be written to lower 3 bits of the control register.

2. Refer to diagram of "Double-Size Vertical Display" and item 6 of Notes on Operation.

Status Bits

The functions of status bits are as follows:

E	Display Field Status	
0	Odd-numbered screen display, or in non-interlace mode	
1	Even-numbered screen display	

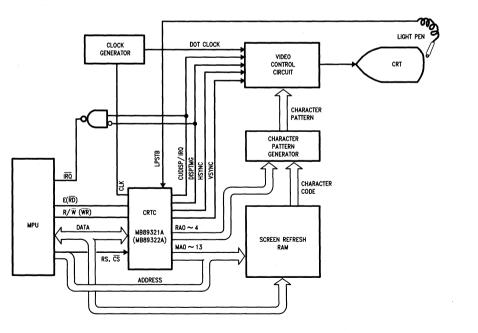
SB **Vertical Blanking Status**

0	During screen display	
1	During vertical blanking	

SL **Light Pen Strobe Status**

0	Light pen strobe ignored	
1	Light pen strobe accepted	

Notes:

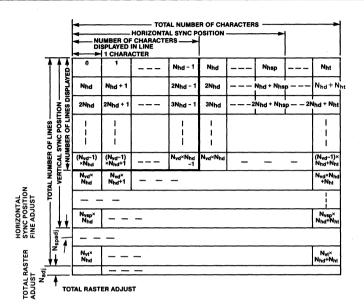

1. Light pen strobe status is cleared by reset or by read of the status register.

2. Vertical blanking status and light pen strobe status are set regardless of the setting of the control register interrupt function.

3. E bit is controlled by the vertical blank. Therefore, E bit status is different from normal field image, and it's update timing changes depending on number of lines displayed. To get correct status, E bit must be read immediately after the display period.

Restrictions on Values Written to Registers Values which may be written to internal registers are as follows: < number of characters (B1) < total number of characters in line (R0) $+ 1 \le 256$ 0 (1) displayed in line (2) 0 < number of lines displayed (R6) < total number of lines (R4) $+1 \le 128$ (3) 0 \leq horizontal sync position (R2) \leq total number of characters in line (R0) (4) 0 \leq vertical sync position (R7) \leq total number of lines (R4) (5) 0 \leq cursor start raster (R10) \leq cursor end raster (R11) \leq maximum raster address (R9) (interlace mode and non-interlace modes) \leq cursor start raster (R10) \leq cursor end raster (R11) \leq maximum raster address (R9)+ 1 0 (interlace & video mode) (6) 2 \leq maximum raster address (R9) \leq 30 (interlace & video mode only) (7) 3 \leq total number of characters in line (R0) (except in non-interlace mode) 5 ≤ total number of characters in line (R0) (non-interlace mode only) (8) Vertical sync position fine adjust (R27) < maximum raster address (R9) (9) Smooth scroll (R29) < maximum raster address (R9)

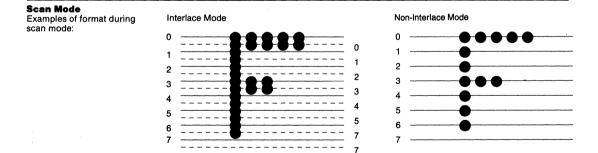
System Block Diagram



Programmable Values

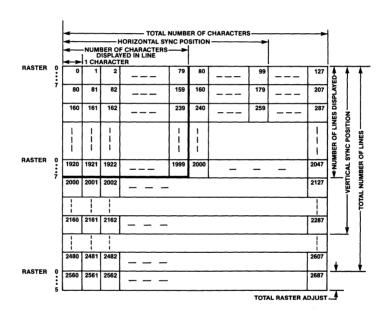
Programmable values which can be written to registers and their respective symbols are as shown below:

Register Number	Register Name	Programmable Value	Symbol
R0	Total Number of Characters in Line	Characters	Nht
R1	Number of Characters Displayed in Line	Characters	Nhd
R2	Horizontal Sync Position	Characters	Nhsp
R3	Sync Signal Pulse Width	Rasters/Characters	Nvsw/Nhsw
R4	Total Number of Lines	Lines	Nvt
R5	Total Raster Adjust	Rasters	Nadj
R6	Number of Lines Displayed	Lines	Nvd
R7	Vertical Sync Position	Lines	Nvsp
R8	Scan Mode/Skew		
R9	Maximum Raster Address	Rasters	Nr
R10	Cursor Start Raster	Rasters	N _{CSTART}
R11	Cursor End Raster	Rasters	N _{CEND}
R12	Start Address 1		N
R13	Start Address 1		N _{SI}
R14	Cursor		
R15	Cursor		
R16	Light Pen		
R17	Light Fell		
R18	Screen 2 Display Start Position	Lines	N _{L2}
R19	Start Address 2		N
R20			N _{S2}
R21	Screen 3 Display Start Position	Lines	N _{L3}
R22	Start Address 3		N.
R23	Start Address 5		N _{S3}
R24	Screen 4 Display Start Position	Lines	N _{L4}
R25	Start Address 4		N _{S4}
R26	Start Address 4		NS4
R27	Vertical Sync Position Fine Adjust	Rasters	Nspadj
R28	Light Pen Raster		
R29	Smooth Scroll	Rasters	Nradj
R30	Control		
R31	Control/Status		


Screen Format

Line numbers are counted starting at the following addresses:

Line number 0 = starts from memory address 0 Line number 1 = starts from memory address Nhd Line number 2 = starts from memory address 2Nhd

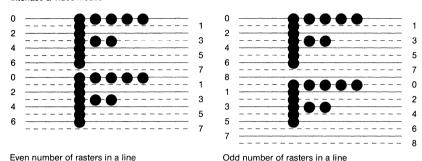


Example of Screen Format

Dot clock rate	16.128 MHz
Horizontal frequency	15.75 kHz
Vertical frequency	60.1145 Hz

At the following clock rates and register settings, the screen format is as shown in the diagrams below:

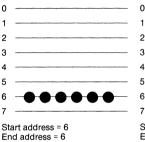
Total number of characters in line, Register 0:	127
Number of characters displayed in line, Register 1:	80
Horizontal sync position, Register 2:	99
Sync signal pulse width, Register 3:	8
Total number of lines, Register 4:	31
Total raster adjust, Register 5:	6
Number of lines displayed, Register 6:	25
Vertical sync position, Register 7:	27
Maximum raster address, Register 9:	8

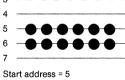

4

٠

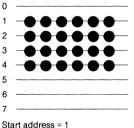
Scan Mode

(Continued)

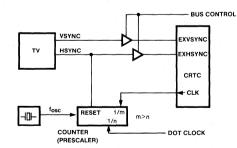

Interlace & Video Modes



Even number of rasters in a line

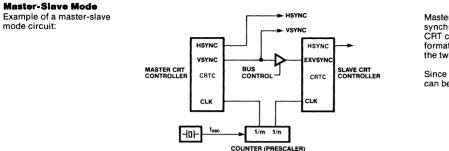


Examples of settings for the cursor start and end raster registers:


End address = 6

End address = 4

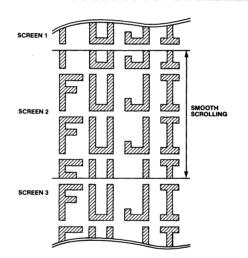
TV Sync Mode


Example of a TV Sync mode circuit:

TV sync mode is used to superimpose displays on TV or video signals. In the above example a 1/n fOSC dot shift

will occur. Accordingly, an appropriate prescaler should be designed to avoid image resolution problems.

During HSYNC, CLK must be low (stopped).



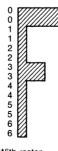
Master-slavemode is used to synchronize master and slave CRT controllers. The screen formats and clock phases of the two CRTCs must match.

Since HSYNC is output, PLL can be used.

Smooth Scroll

Example of smooth scrolling display:

In the example, screen 2 is being smooth scrolled.


Double-Size Vertical Display

6

Without raster interpolation function

With raster interpolation function

The vertical size of the display can be doubled using the raster interpolation function as shown in the example.

In raster interpolation, the raster address is updated every second raster.

Refer to item 6 of Notes on Operation.

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Input Voltage	V _{IN}	-0.3 to +7.0	v
Supply Voltage	Vcc	-0.3 to +7.0	V
Operating Ambient Temperature	TA	-40 to +85	°C
Storage Temperature	T _{STG}	-55 to +150	°C
Power Dissipation	PD	600	mW

Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

			Value			
Parameter		Symbol	Min.	Тур.	Max.	Unit
Supply Voltage		V _{CC}	4.5	5.0	5.5	٧
Cuppiy Vollage		V _{SS}		0.0		٧
Input High Voltage	LPSTB, CLK	V _{IH1}	2.2		V _{CC}	٧
input high voltage	Other Inputs	VIH	2.0		V _{CC}	٧
Input Low Voltage	LPSTB, CLK	V _{IL1}	-0.3		0.6	٧
input Low Voltage	Other inputs	VIL	-0.3		0.8	٧
Ambient Temperature		TA	-20	25	+ 75	°C

DC Characteristics

Recommended operating conditions unless otherwise noted.

				Value			
Parameter		Symbol	Test Conditions	Min	Тур	Max	Unit
Input High	LPSTB, CLK	V _{IH1}		2.2		Vcc	V
Voltage	Other Inputs	VIH		2.0		Vcc	V
Input Low	LPSTB,CLK	VIL1		-0.3		0.6	V
Voltage	Other Inputs	VIL		-0.3		0.8	V
Input Leakage Current	D0 to D7, EXHSYNC, EXVSYNC	IIL	$V_{IN=0.4 V \text{ to } 2.4 V,}$ $V_{CC}=5.5 V$	-10		10	μΑ
	Other Inputs	I _{IL1}	$V_{IN} = 0 V \text{ to } 5.5 V$	-2.5		2.5	μΑ
Output High	D0 to D7	VOH	I _{OH} =-205 μA	2.4			V
Voltage	Other Outputs	V _{OH1}	I _{OH} =-100 μA	2.4			v
Output Low	Voltage	VOL	I _{OL} =1.6 mA			0.4	٧
Input Capacitance	D0 to D7, EXHSYNC, EXVSYNC	C _{IN}	V _{IN} =0 V			12.5	pF
	Other Outputs	C _{IN1}	f=1.0 MHz			10.0	pF
Ouput Capacitance		COUT				10.0	pF
Power Dissipation		PD	V _{CC} =V _{max} f=1.0 MHz		10	30	mW

AC Characteristics Recommended operating conditions unless otherwise noted.

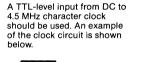
				Value	•		
Paramete	er	Symbol	Conditions	Min.	Typ.	Max.	Uni
	Clock Period	t _{CLK}		250			ns
	Clock High	t _{PWCH}		100			ns
	Clock Low	tPWCL		100			ns
	Clock Rise	t _{CR}				20	ns
	Clock Fall	t _{CF}				20	ns
CRT	Memory Address Delay	t _{MAD}	. (1)			80	ns
Controller	Raster Address Delay	t _{RAD}	- (1) -			100	ns
	Display Timing Delay	t _{DTD}				120	ns
	Cursor Timing Delay	t _{CDD}				120	ns
	Horizontal Synchronous Delay	t _{HSD}				100	ns
	Vertical Synchronous Delay	t _{VSD}				120	ns
	Clock Stop	t _{CLKST}	_	100			ns
	External Horizontal Synchronous Signal Width	t _{PWHS}		1000			ns
	External Horizontal Synchronous Rise	t _{HR}				20	ns
External Synchro-	External Horizontal Synchronous Fall	t _{HF}			. '	20	ns
nization	External Vertical *1 Synchronous Signal Width	t _{PWVS} / t _{PWVSS}	- (2)	1220/ 1750			ns
	External Vertical Synchronous Rise	t _{VR}				20	ns
	External Vertical Synchronous Fall	t _{VF}				20	ns
	External Synchronous Setup (Master-slave mode)	tvss		50	-		ns
	Light Pen Strobe Width	t _{PWLP}		60			ns
Light Pen	Light Pen Strobe	t _{LPDR}	_ (3)			0	ns
	Maximum Period	tLPDF				70	ns
	Enable Period	t _E		0.5			μs
	Enable High	t _{PWEH}		0.22			μs
	Enable Low			0.21			μs
	Enable Rise	t _{ER}				20	ns
CRT	Enable Fall	t _{EF}	[(4) MB89321			20	ns
Interface	Address Setup	t _{AS}	only]	40			ns
1	Data Delay	t _{DDR}				120	ns
	Data Access	t _{ACC}				160	ns
	Address Hold	t _{AH}		10			ns
	Data Hold	t _H		10			ns
	Data Setup	t _{DSW}		60			ns

AC Characteristics (Continued)

				Value	Ð		
Paramet	er	Symbol	Conditions	Min	Тур	Max	Un
	Read Address Setup	t _{AR}		0			ns
	Read Low	t _{RR}		160			ns
	Read Address Hold	t _{RA}		0			ns
	Write Address Setup	t _{AW}		0			ns
	Write Low	t _{WW}	[(5)MB89322A	190			ns
CPU Interface	Write Address Hold	t _{WA}	only] -	0			ns
2	Data Delay	t _{RD}				120	ns
	Data Hold	t _{DF}		10			ns
	Data Setup	t _{DW}		60			ns
	Data Hold	t _{WD}		0			ns
	Access Inhibit	t _{DIS}		210			ns
	Interrupt Delay	t _{IRDF}				150	ns
IRQ	Interrupt Delay *2	t _{IRDR}	(6)			1/2t _{clk} +150	ns

 Note:
 *1. External vertical synchronous signal width t_{pWVS} = 1000 ns + t_{CLK} (TV sync mode) t_{PWVSS} = 1000 ns + 3 t_{CLK} (Master slave mode)

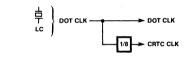
 *2. Rising delay time when light pen strobe input in non display time


P/S SHIFT REGISTER

PRESCALER 1/8

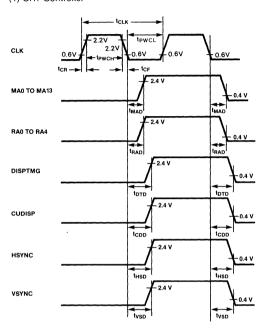
CLK

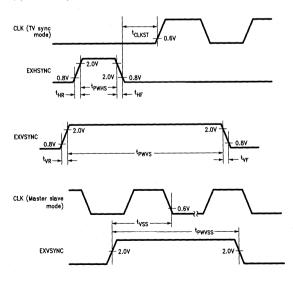
> VIDEO


Clock

CLOCK

TTL-LEVEL-INPUT

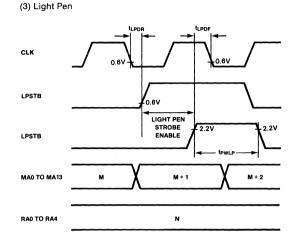

A circuit example for horizontal 8-dot character mode is as follows:



(1) CRT Controller

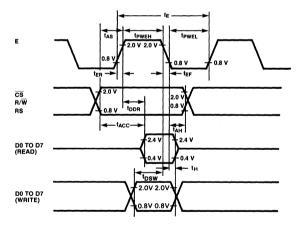
(2) External synchronization

••



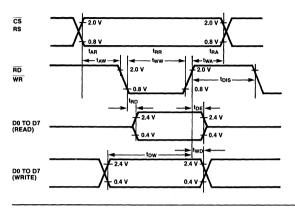
FUJITSU

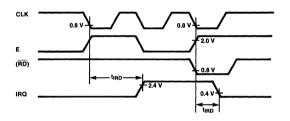
4



(Continued)

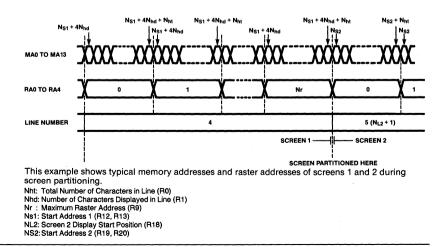
When the light pen strobe is enabled, LPSTB goes high, M+2 is loaded into the light pen register, N into the light pen raster register, and the display status bit is set.


(4) CPU Interface 1 (MB89321A only)


FUJITSU

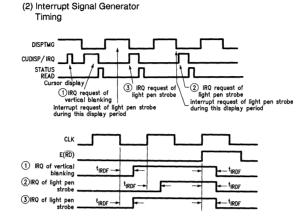
Timing Diagrams (Continued)

(5) CPU Interface 2 (MB89322A only)



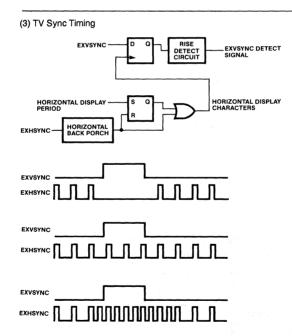
(6) IRQ Timing

Notes on Operation


(1) Screen Partition Timing

4

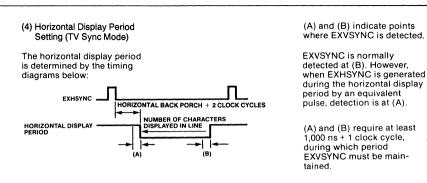
FUJITSU


Notes on Operation (Continued)

The interrupt signal is output to the CUDISP pin during display blanking. The interrupt signal can be generated as shown in the diagram below.

When the cursor is not enabled, the CUDISP pin functions as IRQ.

In TV sync mode, EXHSYNC is enabled when a pulse of 1,000 ns or more is applied. Also, during vertical blanking, EXVSYNC is enabled to sync the controller's internal horizontal display period signal. In order to use the TV sync function, a horizontal display period should be set. The basic circuit required to do this is shown to the left.


Note: Low (enabled) during the horizontal display period.

The TV sync function may not operate under the timing shown here at the immediate left.

The TV sync function is activated using the timing as shown here.

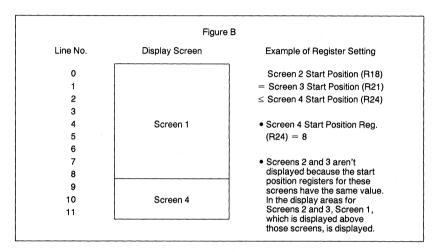
Notes on Operation

(Continued)

(5) Screen Partitioning

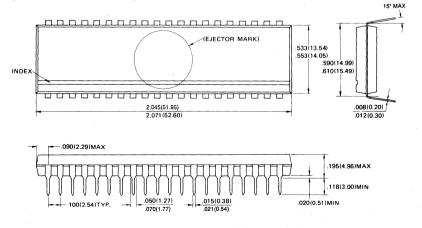
The display order of partitioned screens can be changed by programming the start position registers (R18, R21, and R24) for each partitioned screen, except screen 1, which is always displayed from line 0 on the screen. (See Figure A below.)

But, when the same values are programmed to the start position registers, the partitioned screens for those start position registers aren't displayed, even if those partitioned screens are enabled by P0 and P1 bits.


	Figure	A
Line No.	Display Screen	Example of Register Setting
0		Screen 3 Start Position (R21)
1	Screen 1	\leq Screen 2 Start Position (R18)
2		\leq Screen 4 Start Position (R24)
3		
4	Screen 3	 Screen 2 Start Position Reg.
5		(R18) = 5
6		 Screen 3 Start Position Reg.
7	Screen 2	(R21) = 2
8		 Screen 4 Start Position Reg.
9		(R24) = 8
10	Screen 4	
11		

4

Notes on Operation (Continued)


(6) Raster Interpolation

At present, two versions of MB89321A/89322A are provided: One has the raster interpolation function, and another has no raster interpolation function. On MB89321A/89322A without the raster interpolation function, "0" must always be written to RI bit of the control/status register (R31).

Package Dimensions Dimensions in inches (millimeters)

40-Lead Plastic Dual In-Line Package (Case No.: DIP-40P-M01)

© 1985 FUJITSU LIMITED D40005S-1C

FUJITSU